This article takes a first look at historical Presidential approval ratings (approval polls from Gallup and other polling services) from Harry Truman through Joe Biden using our math recognition and automated model fitting technology. Our Math Recognition (MathRec) engine has a large, expanding database of known mathematics and uses AI and pattern recognition technology to identify likely candidate mathematical models for data such as the Presidential Approval ratings data. It then automatically fits these models to the data and provides a ranked list of models ordered by goodness of fit, usually the coefficient of determination or “R Squared” metric. It automates, speeds up, and increases the accuracy of data analysis — finding actionable predictive models for data.
The plots show a model — the blue lines — which “predicts” the approval rating based on unemployment rate (UNRATE), the real inflation adjusted value of gold, and time after the first inauguration of a US President — the so-called honeymoon period. The model “explains” about forty-three (43%) of the variation in the approval ratings. This is the “R Squared” or coefficient of determination for the model. The model has a correlation of about sixty-six percent (0.66) with the actual Presidential approval ratings. Note that a model can have a high correlation with data and yet the coefficient of determination is small.
One might expect US Presidential approval ratings to decline with increasing unemployment and/or an increase in the real value of gold reflecting uncertainty and anxiety over the economy. It is generally thought that new Presidents experience a honeymoon period after first taking office. This seems supported by the historical data, suggesting a honeymoon of about six months — with the possible exception of President Trump in 2017.
The model does not (yet) capture a number of notable historical events that appear to have significantly boosted or reduced the US Presidential approval ratings: the Cuban Missile crisis, the Iran Hostage Crisis, the September 11 attacks, the Watergate scandal, and several others. Public response to dramatic events such as these is variable and hard to predict or model. The public often seems to rally around the President at first and during the early stages of a war, but support may decline sharply as a war drags on and/or serious questions arise regarding the war.
There are, of course, a number of caveats on the data. Presidential approval polls empirically vary by several percentage points today between different polling services. There are several historical cases where pre-election polling predictions were grossly in error including the 2016 US Presidential election. A number of polls called the Dewey-Truman race in 1948 wrong, giving rise to the famous photo of President Truman holding up a copy of the Chicago Tribune announcing Dewey’s election victory.
The input data is from the St. Louis Federal Reserve Federal Reserve Economic Data (FRED) web site, much of it from various government agencies such as unemployment data from the Bureau of Labor Statistics. There is a history of criticism of these numbers. Unemployment and inflation rate numbers often seem lower than my everyday experience. As noted, a number of economists and others have questioned the validity of federal unemployment, inflation and price level, and other economic numbers.
(C) 2022 by John F. McGowan, Ph.D.
About Me
John F. McGowan, Ph.D. solves problems using mathematics and mathematical software, including developing gesture recognition for touch devices, video compression and speech recognition technologies. He has extensive experience developing software in C, C++, MATLAB, Python, Visual Basic and many other programming languages. He has been a Visiting Scholar at HP Labs developing computer vision algorithms and software for mobile devices. He has worked as a contractor at NASA Ames Research Center involved in the research and development of image and video processing algorithms and technology. He has published articles on the origin and evolution of life, the exploration of Mars (anticipating the discovery of methane on Mars), and cheap access to space. He has a Ph.D. in physics from the University of Illinois at Urbana-Champaign and a B.S. in physics from the California Institute of Technology (Caltech).