[Video Review] Sabine Hossenfelder on What’s Going Wrong with Particle Physics

Sabine Hossenfelder, a disillusioned (former?) theoretical particle physicist and science popularizer, recently published a video “What’s going wrong in particle physics?” on her YouTube channel criticizing fifty years of common practice in particle physics. I’ve previously reviewed her book Lost in Math: How Beauty Leads Physics Astray published in 2018 and an editorial “The Uncertain Future of Particle Physics” in The New York Times (January 23, 2019) questioning the wisdom of funding CERN’s recent proposal to build a new particle accelerator, the Future Circular Collider (FCC), estimated to cost over $10 billion.  See the links below for the Lost in Math book review and commentary on the editorial. Comments on the YouTube video follow these links.

Dr. Hossenfelder’s point in the video is fairly simple. She argues that since the formulation of the so-called “standard model” (formerly known as Glashow-Weinberg-Salam or Weinberg-Salam after theoretical physicists Sheldon Glashow, Stephen Weinberg, and Abdus Salam) in the 1960’s and 1970’s, particle physicists have confirmed the standard model, discovering the predicted W and Z bosons in the 1980s, the top quark at Fermilab, and finally the Higgs particle at CERN in 2012.

However, all attempts to find new physics and new particles beyond the standard model since the 1970’s have failed. Particle physicists continue to construct more complex theories that include the standard model such as the Grand Unified Theories (GUTs) of the 1970s that predicted the decay of the proton — never detected. These theories have predicted a long succession of hypothetical particles such as axions, supersymmetric partners, WIMPs (weakly interacting massive particles), other candidates for hypothetical dark matter in cosmology, and many, many more.

These complex beyond the standard model theories keep moving the energy level — usually expressed in billions or trillions of electron volts higher and higher, justifying the research, development, and construction of ever larger and more expensive particle accelerators such as the Tevatron at Fermilab in the United States, the Large Hadron Collider (LHC) at CERN in Switzerland, and the proposed Future Circular Collider (FCC) at CERN.

This lack of success was becoming apparent in the 1980’s when I was studying particle physics at Caltech — I worked briefly on the IMB proton decay experiment which surprise, surprise failed to find the proton decay predicted by the GUTs — and the University of Illinois at Urbana-Champaign on the Stanford Linear Accelerator Center (SLAC)’s disastrous Stanford Linear Collider (SLC) which ran many years over schedule, many millions of dollars over budget, and surprise, surprise discovered nothing beyond the standard model much as Dr. Hossenfelder complains in her recent YouTube video.

Cynical experimental particle physicists would make snide comments about how theory papers kept moving the energy scale for supersymmetry, technicolor, and other popular beyond the standard model theories just above the energy scale of the latest experiments.

Not surprisingly those who clearly perceived this pattern tended to leave the field, most often moving to some form of software development or occasionally other scientific fields. A few found jobs on Wall Street developing models and software for options and other derivative securities.

The second physics bubble burst in about 1993, following the end of the Cold War with huge numbers of freshly minted Ph.D.’s unable to find physics jobs and mostly turning into software developers. The first physics bubble expanded after the launch of Sputnik in 1957 and bust in about 1967. The Reagan administration’s military build-up in the 1980’s fueled another bubble — often unbeknownst to the physics graduate students of the 1980’s.

Dr. Hossenfelder’s recent video, like Lost in Math, focuses on scientific theory and rarely touches on the economic forces that complement and probably drive — consciously or not — both theory and practice independent of actual scientific results.

Scientific research has a high failure rate, sometimes claimed to be eighty to ninety percent when scientists are excusing obvious failures and/or huge cost and schedule overruns — which are common. Even the few successes are often theoretical — better understanding of some physical phenomenon that does not translate into practical results such as new power sources or nuclear weapons for example. But huge experimental mega-projects such as the Large Hadron Collider (LHC) or the Future Circular Collider (FCC), justified by the endless unsuccessful theorizing Dr. Hossenfelder criticizes, are money here and now, jobs for otherwise potentially unemployed physicists, huge construction projects, contracts for research and development of magnets for the accelerators etc.

Big Science creates huge interest groups that perpetuate themselves independent of actual public utility. President Eisenhower identified the problem in his famous Farewell Address in 1961 — best known for popularizing the phrase “military industrial complex.”

Akin to, and largely responsible for the sweeping changes in our industrial-military posture, has been the technological revolution during recent decades.

In this revolution, research has become central; it also becomes more formalized, complex, and costly. A steadily increasing share is conducted for, by, or at the direction of, the Federal government.

Today, the solitary inventor, tinkering in his shop, has been over shadowed by task forces of scientists in laboratories and testing fields. In the same fashion, the free university, historically the fountainhead of free ideas and scientific discovery, has experienced a revolution in the conduct of research. Partly because of the huge costs involved, a government contract becomes virtually a substitute for intellectual curiosity. For every old blackboard there are now hundreds of new electronic computers.

The prospect of domination of the nation’s scholars by Federal employment, project allocations, and the power of money is ever present and is gravely to be regarded.

Yet, in holding scientific research and discovery in respect, as we should, we must also be alert to the equal and opposite danger that public policy could itself become the captive of a scientific-technological elite.

https://www.archives.gov/milestone-documents/president-dwight-d-eisenhowers-farewell-address

(C) 2023 by John F. McGowan, Ph.D.

About Me

John F. McGowan, Ph.D. solves problems using mathematics and mathematical software, including developing gesture recognition for touch devices, video compression and speech recognition technologies. He has extensive experience developing software in C, C++, MATLAB, Python, Visual Basic and many other programming languages. He has been a Visiting Scholar at HP Labs developing computer vision algorithms and software for mobile devices. He has worked as a contractor at NASA Ames Research Center involved in the research and development of image and video processing algorithms and technology. He has published articles on the origin and evolution of life, the exploration of Mars (anticipating the discovery of methane on Mars), and cheap access to space. He has a Ph.D. in physics from the University of Illinois at Urbana-Champaign and a B.S. in physics from the California Institute of Technology (Caltech).